

EPA Method 8270 with Nitrogen Carrier Gas

Paul Macek

Technical Support Scientist Shimadzu Scientific Instruments, Inc. Southeast Regional Office Durham, NC 27703 06 August, 2020

Method 8270 with Nitrogen Carrier Gas

A work in progress

This is progress Report Number 2

In January, when we submitted the abstract, we were hoping this work would result in a presentation that could be considered "method ready", or nearly "method ready", but COVID-19 changed our plans, as it did for so many people.

Why Nitrogen?

The helium shortage is **real**

- Rationing is already in place
- High per tank cost
 - As high as \$1000 per tank

- Hydrogen does not work for many 8270 targets
 - Works well for some neutrals
 - Not so well for acids, bases, other neutrals
 - In-source reactions (e. g. nitrobenzene)
 - High background from contamination

Conclusions from Previous Work

- It seems that use of Nitrogen carrier may be a viable option for the solid waste methods.
- N2 seems to works better than hydrogen for the "difficult" compounds
- Detection limits and other results are encouraging
- BUT... N2 carrier unlikely to produce results equal to helium carrier

Shimadzu GCMS-QP2020

All analyses were performed on a Shimadzu GCMS-QP2020

The Shimadzu GCMS-QP2020 is a research grade, state-of-the-art, differentially pumped, EI/CI/NCI single quadrupole GC/MS

Typical Manifold Vacuum 1 mL/Min helium: ~7E-7 torr 0.4 mL/min nitrogen: ~4E-6 torr

Can a GC/MS Pump Nitrogen?

- Most cannot Especially older units
- Newest instruments can if equipped with the latest pump
- Shimadzu GCMS-QP2020 NX and GCMS-QP2020 are equipped to pump nitrogen
 - Edwards nEXT-200/200D
 - Differential pumping
 - Special Tune Needed

Further noise reduction for H2 and N2 with the new TMP

Dual inlet differential evacuation + High efficient TMP

What have we tried to date?

- Two column diameters
 - 20 m, 0.18 mm ID (Rxi-5Sil MS only)
 - 20 m, 0.15 mm ID
- Two stationary phases
 - Rxi-5Sil MS

Rxi[®]-5Sil MS Structure

Rxi®-17Sil MS Structure

Structures: https://www.restek.com/pdfs/GNSS2180-UNV.pdf

• Rxi-17Sil MS

What negative effects did we expect to see?

Using Nitrogen, we expected:

- Longer Chromatographic Runs
 - Van Deemter Plot
- Reduced sensitivity
 - Caused by higher source pressure
 - 7X reduction in sensitivity expected
- Band broadening on lighter compounds caused by low flow through the injection port

Van Deemter Plot

Reference 4: LCGC's CHROMacademy

() SHIMADZU

Efficiency Dependence on Column ID

Reference 4: LCGC's CHROMacademy

Work with 0.18 mm ID column

- Bottom line: 0.18 mm columns did not work well.
 - PNA peak shapes were problematic at low linear velocity
 - Was not able to compensate with temperature
 - Tried various injection techniques and liner types

Work with 0.18 mm ID columns was abandoned

Began working with 0.15 mm ID columns

What positive effects did we see?

- We got better results with 0.15 mm ID columns
 - <u>Optimum</u> linear velocity <u>increases</u> as column ID decreases
 - We were able to operate closer to the optimum linear velocity for 0.15 mm ID columns
 - Lower flow minimizes effect of nitrogen on sensitivity
- We saw no chromatographic impact on active compounds
- There were no in-source reactions

Unexpected Results

- Attenuation of the late eluting PNAs
 - Extreme on the Rxi-5Sil MS Column
 - Much less extreme on the Rxi-17Sil MS column
- High m/z 42 background
 - High enough to have an effect on library search results for low responders
 - Not present when using helium
 - Seems to be uniform throughout the chromatogram
 - Carrier was double filtered UHP N₂ Contamination is unlikely.
 - Appears to be a result of an in-source reaction involving the carrier
 - Cyanamide, Diazomethane
- Scanning from m/z 45 results in a much lower background

() SHIMADZU

MS Background

() SHIMADZU

MS Background

Un-Subtracted Spectrum of Aniline Scanning 35-500 AMU Un-Subtracted Spectrum of Aniline Scanning 45-500 AMU

Un-Subtracted Library Search

Incorrect Library "hit" on 3,3,4,4,4-Pentachlorobutan-2-one

() SHIMADZU

Subtracted Library Search

Correct Library search hit on Ethane, hexachloro-

() SHIMADZU

MS Background

NIST Mass Spectrometry Data Center, William E. Wallace, director

MS Background

Diazomethane

NIST Mass Spectrometry Data Center, William E. Wallace, director

Results from the Rxi-5Sil MS Column

- Chromatically, results were OK except for:
 - Response attenuation of late eluting PNAs and some phthalates
 - Not a problem with helium carrier
 - Band Broadening on late eluting compounds
 - Unusual peak shapes
 - Also not a problem with helium carrier
 - Separation of early compounds was tricky
 - N-nitroso-dimethylamine and pyridine eluted prior to toluene
 - Toluene is a solvent component of the standards ---
 - Necessary to shut off the MS for a few seconds after pyridine elutes
- Switched to Rxi-17Sil MS Column

Chromatogram of a 20 ppm Standard on Rxi-5Sil MS with Helium Carrier

() SHIMADZU

Chromatographic Conditions

Conditions for Rxi-5Sil MS Analyses

Conditions for Rxi-17Sil MS Analyses

Column Oven Temp. :	40.0	° ° °	300		Column Oven Temp. :	60.0 °C	°C 30	<u>بة</u>				
Injection Temp. :	275.0	°C ³	200		Injection Temp. :	275.0 °C	20	•				
Injection Mode :	Split ~				Injection Mode :	Split \sim	•					
Sampling Time :	0.60	min	0.0 2.5 5.0 7.5 10.0 12.5 15.0	17.5	Sampling Time :	1.00 min		0.0	2.5 5.0	0 7.5 10.0 12.5	15.0 17.5	20.0 min
Canter Gas : N2/Air Prim. Press. : 500-900			Program : Column Oven Temperature V		Canter Gas : N2/Air Prim. Press. : 500-900			Program : Column Oven Temperature V				
Flow Control Mode : Linear Velocity \sim					Flow Control Mode : Linear Velocity \checkmark							
Pressure :	108.7	kPa	Rate Final Temperature Hold Time	^	Pressure :	118.8 kPa	а		Rate	Final Temperature	Hold Time	^
Total Flow :	3.0	mL/min	1 40.00 200.0 0.00		Total Flow :	3.0 mL/	/min	1	20.00	285.0	0.00	
Column Flow :	0.42	mL/min	2 25.00 250.0 0.00 3 5.00 290.0 3.50		Column Flow :	0.41 mL/	/min	2	10.00	330.0	5.00	
Linear Velocity :	30.0	cm/sec	Total Program Time : 18.00 min		Linear Velocity :	30.0 cm/	/sec	Tota	al Program	Time: 21.75	mir	, T
Purge Flow :	0.5	mL/min	Column		Purge Flow :	0.5 mL/	/min	Colu	umn			
Split Ratio :	5.0		Name SHRxi-5Sil MS Thickness : 0.15 um Length : 20.0 m Diameter : 0.15 mm S	et	Split Ratio :	5.0		Nam Leng	ne Rxi-179 ngth: 20.0 m	il MS Thickness : m Diameter :	0.15 um 0.15 mm	Set

Chromatogram of Late Eluting PNAs on the Rxi-5Sil MS Column

Non-gaussian peak shape

Comparison: note gaussian peak shapes on earlier peaks

Results from the Rxi-17Sil MS Column

- Generally, results were better on the Rxi-17Sil MS column
 - Much less response attenuation of late eluting PNAs
 - Less band broadening on late eluting compounds
 - Better (more gaussian) peak shapes
 - Separation of early compounds was much improved
 - N-nitroso-dimethylamine and pyridine eluted after toluene
 - No need to shut off the MS to cut out Toluene
 - Better separation on the front end compounds
 - Better beak shapes on the first 5 compounds than on the Rxi-5Sil MS

Results from the Rxi-17Sil MS Column

- One critical separation *cannot* be accomplished on the Rxi-17Sil MS
 - Dibenz[a,h]anthracene / Indeno[1,2,3-cd]pyrene are not sufficiently separated for quantitation of Indeno[1,2,3-cd]pyrene in a reasonable timeframe
 - Separation can only be achieved with long run times (~50 min)

Chromatogram of a Standard on the Rxi-5Sil MS With N₂ Carrier

Chromatogram of a Standard on the Rxi-17Sil MS With N₂ Carrier

Chromatogram of a Standard on the Rxi-17Sil MS w/Separation

Overlay of 20 ppm Standard Rxi-5Sil MS and Rxi-17Sil MS with N₂ Carrier

20 ppm Standard: Rxi-5Sil MS with Helium and Rxi-17Sil MS with N₂

🕀 SHIMADZU

Instrument Detection Limits (IDL)

- IDLs were determined via the "old" method from 40 CFR Part 136 Appendix B.
 - Most of the published MDLs were determined via that method.
- There was no sample preparation; standards only
 - We were evaluating chromatography and instrument performance
- We ran consecutive 11 reps for 10 degrees of freedom
 - "spike" level was 0.8 ng/μL
- Quantitation was performed by RRF calculated from a 0.8 ng/µL standard
- Average detection limits were similar on both columns
- Late eluting PNA detection limits were much better on the Rxi-17Sil MS

Instrument Detection Limits (IDL)

- There are too many compounds to tabulate individually in this presentation
- For final concentration we calculated averages in ng/μL at the instrument and for calculational purposes assumed
 - 1 L for water and 30 g for solids

Mean DL for Rxi-5Sil MS Water: 0.57 μg/L Solid: 19 mg/Kg

Mean DL for Rxi-17Sil MS Water: 0.55 μg/L Solid: 18 mg/Kg 🕀 SHIMADZU

Calibration

- 6-Point calibrations were performed on both columns
 - 4 ng/μL, 10 ng/μL, 20 ng/μL, 40 ng/μL, 80 ng/μL, 120 ng/μL
 - Linear velocity was 30 cm/sec on both columns
 - Both calibrations were run as split injections with a split ratio of 5.
 - Temp program was optimized to produce the best separation in the shortest time
 - Rxi-5Sil MS started at 40°C
 - Rxi-17Sil MS started at 60°C
- Linearity was a challenge on both columns
 - At least partly because of overloading on the 120 ng/μL standard
 - The "usual suspects" phenols, benzidine, etc. were not detected well at 4 ng/μL
- Because of COVID-19 delays, we were unable to address calibration issues

8270 Tuning

- Special DFTPP tune algorithms for nitrogen have not yet been developed
- The MS was tuned by Shimadzu's High Sensitivity Autotune algorithm
 - No attempt was made to adjust the mass pattern to meet DFTPP criteria or to compensate for nitrogen in the manifold

8270 Tuning

- DFTPP was analyzed *pro forma* to monitor daily instrument drift
- Usually, the DFTPP met or came close to meeting 8270D criteria
- The DFTPP rarely met the older 1970's tuning requirements
- The analyst made liberal use to the NIST library search in setting up the RT table for the "17" column. Matches for uncontaminated spectra typically were greater than 90%. There was no evidence of spectral distortion

Conclusions

- Except for one separation, the data from the "17" column were promising
- The N₂ results were *not* as good as for helium, but that was expected
- As long as helium is available and affordable, it is by far the best option
- The data were much better than those produced by hydrogen carrier
 - That was the purpose of the study; to set up a method that was superior to what has been obtained with hydrogen carrier
- Nitrogen carrier needs more development before helium is unavailable

References

- 1) "Evaluation of Hydrogen as a Carrier Gas for Gas Chromatography / Mass Spectrometry". Shimadzu Application News No. SSI-GCMS-1303 February 2013
- 2) EPA Method 8270D Analysis Using Narrow-bore GC Columns and Fast Data Acquisition with a Quadrupole GCMS System. Richard Whitney, Ph.D.; Zhuangzhi "Max" Wang, Ph.D.; Clifford M. Taylor; Shimadzu Scientific Instruments
- 3) Nitrogen Carrier Gas for GC Is it Feasible? Is it Practical? Restek Chromablography, Jack Cochran, 2012
- 4) Nitrogen as a Carrier Gas for Capillary GC

LC/GC's CHROMacademy

- 6) SW-846 Test Method 8270D: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry.
- 7) Changing from Helium to Nitrogen and Maintaining the Separation Efficiency in the Same Analysis Time. Jaap de Zeeuw and Jack Cochran, Restek Corporation

